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ABSTRACT

The Kalman filter is used to provide estinates of the

position and velocity of a storm based upon observation of the

storm's longitude and latitude. Nonstationar noise is shown

to degrade the performance of the filter and cause tracking

divergence. Time-varying values for the noise covariance

matricies R and Q, and the addition of an external forcing

function to the filter effectively conpensated for this

tracking error.

Results for the simulations show significant performance

advantages in using external forcing functions in the system.
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I.INTRODUCTION

A. GENERAL

The western North Pacific Ocean is the most active

tropical cyclone basin in the world. The need for accurate

storm forecasts is of utmost importance to the civilian and

military communities. The loss of both life and property from

these storms can be considerable. The early sailors recognized

that the low pressures were associated with high winds

rotating counterclockwise around the center in the Northern

Hemisphere and clockwise in the Southern Hemisphere. They also

knew of the dangerous winds and heavy weather to the right of

the center in the Northern Hemisphere and to the left in the

Southern Hemisphere, and adjusted their sailing practices

accordingly to minimize the amount of damage caused by these

severe storms and to provide more accurate warnings to ships

and shore facilities. This study develops a tropical cyclone

track prediction model using a Kalman Filter with smoothing.

B. OBJECTIVES OF THIS THESIS

This thesis will be an extension of a previous thesis done

by LTJG Asim Mutaf [Ref.2]. The major points of that thesis

were

• Development of a Kalman Filter storm tracking program

• Fictitious noise source for state excitation matrix Qk



* The position errors achieved by this program were 10-15

nautical miles

This work attempts to improve on the previous research by

implementing deterministic forcing functions and a maneuver

divergence detection scheme that uses a noise variance

estimator process. This research investigates the behavior of

a Kalman Filter in tracking a storm by means of latitude and

longitude observations.

The estimation of the forcing function, directional and

speed deviation is very important in a storm position

estimate. By having a more accurate assessment of what the

storm has done in the past, we will be better able to predict

and estimate a storm's future course, speed and position.

C. THESIS ORGANIZATION

Chapter I states the problem of concern and serves as an

introduction to the report. Chapter II gives a mathematical

derivation of the Kalman Filter equations and explanations and

comments. Chapter III model's storm tracking and prediction.

Chapter IV shows the simulations and gives results. linally,

Chapter V lists the conclusions. The appendics contains the

program code.
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II. KALMAN FILTER

A. GENERAL

The Kalman Filter has been in use since 1960 in the design

of estimation systems. Kalman introduced the filter as a

state space representation of a linear time invariant system.

Modelling of this system has the advantage of maintaining the

system's physical state in a matrix equation model.

The teims and parameters for the equations are listed in

Table 2.1. Terms appearing with single subscripts refer to a

vai- of the term at a given time while dual subscripts refer

to tn, term's values at the time of the first subscript and

containing observation data ending with the last.

B. THEORETICAL BASIS OF THE KALMAN FILTER

There are several methods to model a system bilinear

transformation, state space approximation, and pole zero

mapping, etc. The method used here is state space

approximation. The linear system's 3tate space model is

depicted in Eq. (2.1). The measurements taken during system

paiameter estimation are given in Eq. (2.2), where zk

represents observed parameters (bearing, range, etc.) and x,

represents the physical state of the system (position,

velocity, etc.).

3



Xk- I = 4 Xk + Wk (2.1)

Zk-l = HXk l+ Vk,1  (2.2)

These standard linear difference equations are time

invariant as the equaticn matrices do not vary with the time

subscripts.

TABLF 2.1 DEFINITION OF TERMS

Identity matrix I

System state Xk

State transition matrix

State excitation noise wk

Observation zk

Observation matrix H

Observation noise vk

State estimate (Predicted) Xk l/k

Estimate error Xk+1/k

Expected value of the error E[xkl/k]

Error covariance matrix /k

Residual

Kalman gain C

4



The filtering process estimate of the state vector at the

present time, depends on the present and past measurements.

In order to this, the filter needs a priori information of the

state estimate, its error covariance matrix, and the actual

observation.

The matrix 4) is chosen to fit the target dynamics in Eq.

(2.1). The target dynamics are usually expected to be

stationary and moving linearly at constant velocity. The

appropriate 0 matrix is represented in Eq. (2.3).

1 T 0 0'
o 1 0 0 (2.3)

o0 0 0 1.

while the constant, T, is the observation interval.

H is the observation matrix. Calculating the observation

matrix requires precise knowledige of the state of the system.

When the system is Linear Time Invariant, H is constant.

The noise is assumed to be Additive White Gaussian Noise.

Thik is an idealization, often justified in real systems. The

statistical properties of the input and observation noise

covariance matrices, Q and R, respectively are as followed.

E[w k ] = E[vk] = 0 (2.4)

ErIWk k] = Q (2.5)

E[XvkvkT : R (2.6)
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Correct estimation of the observation noise, vk, is critical

to the Kalman Filter's performance. Two approaches of

estimating the noise and the effect on optimal filter

performance will be examined.

Observations received by the Kalman Filter includes the

unwanted noise plus the desired information. The desired

behavior is to de-emphasize the noise and react to the

information only. The ability to perfectly predict the

states, requires the setting of the Kalman gains to maximizing

the extracted information.

When the predicted value of R exceeds the actual value,

the Kalman gain will be too low and valuable information may

be lost from the observation. Conversely, a smaller value

increases the Kalman gain and causes extraction of the

unwanted noise as information.

An adaptive approach is taken where the filter observes

and attempts to adapt to the actual noise values. While an

adaptive Kalman filter has more computation, it does has the

ability to both compansate for poor estimates of noise and

track non-stationary noise processes.

C. KALMAN FILTER EQUATIONS

Equation (2.7) illustrates the algorithm of the Kalman

Filter. Using a linear recursive formula, the current

estimate, Xk.,/k+1, is a linear combination of the previous

estimate and the current observation. Because the filter does

6



not store the observations, it requires a fixed amount of

memory to process an arbitrary number of observations.

Equations (2.7) and (2.8) are the updated time and updated

observation equations, respectively.

2k-il = (~klk(2.7)

2k-ilk-1 = (I-Gk-lH)kk+llk + Gk.lZk-1 (2.8)

1. Kalman Gain

Equations (2.7) and (2.8) show the role of the Kalman

Gain, G, in the state equations. An error function (as

described in Sec 2. Error Covariance) is minimized to adjust

the values of the Kalman Gain. The Kalman gain is given by

Eq. (2.9).

Gk+1 = Pk+,lkH(HPk.,kJH T + R)-1 (2.9)

Subscript k, used in the equations, shows that G is a function

of discrete t'me.

2. Error Covariance

The error covariance matrices Equations (2.10) and

(2.11) are indicators for the magnitude of the estimation

error. The matrices are formed from the error of the state

vectors.

Pk+llk =E [xkllkX kl/k] (2.10)

Pk-11k1 = EXkilk+lX Tk 11k+1.11)
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The magnitude of the Kalman gain is determined by the estimate

error covariance. The Kalman Filter may be adapted for

situations where the expected error changes. A typical

example illustrating this feature is a target course change

during trackinq. Upon detecting the maneuver, there is an

increase in the expected error and the Kalman gain, thereby

placing more emphasis on the recent observations.

Resetting the error covariance matrix to its initial

value, P0/,11 causes the filter to lock-on the next target

observation. Past information on tracking will be

disregarded.

3. Residual

The residual vector is formed by subtracting the mean

from the observed value, Eq. (2.12).

rk 1 = zk 1- E[Zk I] (2.12)

The unbiased estimate consists of zero mean error.

This allows the expression of the observation vector as

E[z,-h] = E[Hxk, 1 + E[vk..] (2.13a)

= k-i/k (2.13b)

The standart Kalman filter equations are shown in Table

2.2.
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Table 2.2 KALMAN rILTER EQUATIONS

State equation xk1 = 'k + rkWk + PkUk

Measurement equation j =Hk+Vk

States estimate = klk + rkuk

Residual k 1  = Zk+1  - HJk+ik

Error propagation Pk 1k k/k ' + Q

Kalman gain
Gk = P.,I/kHF(HPk.I/kHT 

+ R)-1

Updated error Pk-Ik-= (I - Gk,+H) Pk.1/k

Updated states estimate -kki /k i Rk -1/k + G ,,r ,-+ l

9



Figure 1. summarizes the previcusly developed math model in a

simple block diagram. Important quantities shown are used in

estimating the state of the linear system which consists of

the system, measurement, and the Kalman filter. Noise factors

are included as system and measurement errors.

SYTEM CESKVATION A FRICRI
NIR NOIS YINFRTM TIN

SYSTEM ,,STATE

s~s 'STATE OESERVATICN AMA
SYTM (k) MESUREMENT ~ ) k

Figure 1 Block diagram of system, measurement and
estimator

4. Extended Kalman Filter

Whenever system characteristics do not conform to the

Linear Time Invariant (LTI) model, the extended Kalman Filter

is used. Real systems of concern are nonlinear observation

matrices and linear transition matrices.
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Equations (2.14) and (2.15) illustrate the state space

representation using the nonlinear observation matrix, H. The

observation H matrix is a function of the state.

Xk l = 4 Xk + Wk (2.14)

Zk 1 = H(xk,.) + vk., (2.15)

In calculating the observation matrix, H, only the

first order terms of the power series expansion of the value

of H was maintained.
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III. PROBLEM STATEMENT

A. PHYSICAL SYSTEM

In this chapter a mathematical model of the tracking

system and physical relationship between the storm and the

observer, is introduced. This model is then represented in

the state space for use with the Kalman filter equations.

latitude

y
i/

Vy

S L orn 
/ v

/

longitude

X

Figure 2 Physical layout of storm

The system uses processes data while tracking a storm.

The coordinate system is a two-dimensional cartesian

coordinate system. The x and y axis correspond to East and

12



true North, respectively. The storm is free to move

unrestricted throughout the coordinate system.

The position of the storms are given in x (longitude) and

y (latitude) coordinates, which are received by a radar or

satellite. Estimates are obtained for the location, course,

and speed of the storm (the physical states of the plant).

B. STATE SPACE MODEL

The system to be modelled in this problem is a storm. The

discrete-time, state space model of our system is

Xk-1 = 4 Xk + rUk + PWk (3.1)

where

Xk = parameter to be estimated (state vector)

= state transition matrix

F = system noise coefficient matrix

Uk = deterministic forcing function

Wk = random forcing function.

The state vector xk consists of the position and velocity of

the storm in Eq. (3.2).

Xk (3.2)

13



To obtain the estimate, the filter must be initialized

with an initial state estimate and an initial error covariance

matrix.

An initial velocity is taken to be zero since there is no

velocity information at the beginning. The a priori state

estimates carry with them a large amount of error. The

estimate of this error is used to construct the initial error

covariance matrix. The error was assumed to be zero mean and

uncorrelated. For these conditions, the initial error

covariance matrix is given by

106 0 01
0 106 0 0~(33

0/-i 0 0 10 0^ 1

0 0 0 106!

The matrix 0 in Eq. (3.1) is chosen to fit the storm's

mean dynamics, which moves linearly at constant velocity. The

appropriate 0 matrix is

1 T 0 0*
0 1 0 0 (3.4)
01 T

0 0 0 1.

The constant, T, is the observation interval. T=6 hours

for purposes of this thesis.

The deterministic forcing functions of the storm are

accounted for by the control input vector Uk. The analysis of

14



storm motion shows specific external steering flow effecting

the storm motion. This effect can be represented in the

Kalman filter equations by Uk.

1. Prediction Cyclone Paths

For many years, predictions have been attempted for

the paths of tropical cyclones. Steering flow is a method of

prediction that has remained popular. Steering flow methods

monitor the pressure gradients of the windfield to project the

cyclone path vector. This environmental information is used

to estimate the two-dimensional (north-south, east-west)

advance of the cyclone.

Windfields tend to have small pressure variations in

the tropics. Common practice places greater emphasis on the

monitoring of two dimensional windfields for making the

steering flow path predictions. We will examine these

windfields and attempt to identify the characteristic features

of different groups of cyclones.

Using tropical cyclones in the Pacific, six-hour

position updates are obtained from the Joint Typhoon Warning

Center. The path predictions mode will be based on the

warning center tracking information.

Historical observations show that Northern Hemisphere

cyclones tend to move to the left of the steering currents

predicted path. Analytic models by Chan and Holland [Ref.l

pg.107] and others have explained this abnormality due to the

15



effect of the earth's vorticity. This effect delivers the

desired cyclone path, tending to the left of the steering

currents. This study will group the cyclones in this area of

concern by their direction of movement. Eight years of path

data is presented in Figure 3.

I- 4.-~ ...

250

T5

100

12 5

160

Figure 3 Percentage direction distribution of
tropical cyclones

Most cyclones tend toward the 285-295' bearing direction. The

distribution forms three groups of cyclones moving westward

(265-285'), northward (345-015'), and to the northeast (025-

16



0550). The most popular directions for movement are clearly

the 290-040* directions allowing us to refer to this

distribution as bimodal in [Ref.l pg.107].

To identify the relationship between cyclone path and

surrounding pressure forces and windfields, a simple path

prediction will be examined. Since this investigation

concentrates on the tropics, a standard mercator projection

will be used. In the tropic regions grid distortion is slight

and insignificant.

Forcing function intensities are mated with one of the

directions of motion in Table 3.1. The functions used are

Ux=ce(x-x0 ) and Uy=c(y-y0 ). The a parameter represents the

amplitude of the sheer in the two, one dimensional forcing

functions. The x and y are the longitute and latitude,

respectively.

TABLE 3.1 CLASSIFICATION OF TROPICAL CYCLONE

Stratification Intensity(a)

Westward (265-285*) 37

Northward (345-015') 43

Northeastward (025-055*) 38

Proper choice of coordinate system and neglecting

insignificant terms for the simplest description of cyclone

17



motion, leads to using a cylindrical coordinate system

centered at the cyclone center. Additionally, the observance

of well established physical laws simplifies the math model

cyclone motion to three equations [Ref.6 pg.14].

au fv - - - + F, (3.5)
at r p ar

_V + fu + UV _ 1 ap + F(3.6)++t r pr ax (F.6

aw lap g + FZ  
(3.7)

Symbols used represent physical quantities as shown:

u radial wind component

v azimuthal wind component

w vertical wind component

p air density

p air pressure

g gravity acceleration.

Sources of acceleration in Eq. (3.5) include the Coriolis

effect from earth rotation, centripital acceleration

(l/p) (ap/ar) and from local turbulent effects (Fr). The

nonvarying in time radial wind components (radial wind

constant in time au/at=0) and friction components allow

simplification (frictional effect are negligable Fr=O) of Eq.

(3.5) to the cylindrical form of the gradient wind equation.

This expression is listed by Eq. (3.8).

18



+ fv - 1 ap 0 (3.8)
r paOr

It should be emphasized that Eq. (3.8) is the

"gradient wind balance" applicable only whe:i the conditions of

the above paragraph are met. Pressure gradient force due to

differences of pressure within the fluid mass is (1/p) (ap/ar).

The coriolis force, fv, acts as a deflecting force normal to

the velocity, to the right of the motion in the northern

hemisphere and to the left in the southern hemisphere. The

centrifugal force in a rotating system, deflecting masses

radially outward from the axis of rotation is v2 /r. The

previuosly mentioned U=a(y-y0 ) or U=a(x-x0 ) represents the

large scale environmental steering flow, where, U is the

control input (deterministic forcing function), and a is the

degree of sheer in this horizontal forcing function. Eq.

(3.8) describes wind distribution within the tropical storm.

In summary, U=a(y-y0 ) or U=a(x-x0 ) represents the net large

scale environ~mental high pressure forces acting on the

tropical cyclone. The significance of the proposed forcing

function, U, is that it steers the cyclone, whose internal

structure is described by Eq. (3.8). ( Note: The letter, U,

is used to denote the forcing function to avo~d confusion

with the radial wind component, u.) A schematic description

between the forcing function and storm is shown in Figure 4.

19



U

u Storm

U

U

Figure 4 Schematic describing

between forcing function and storm

2. State Excitation Covariance Matrix Q

The unknown accelerations of the storm are accounted

for by the state excitation vector wk . The analysis of the

state excitation covariance matrix Q accounts for the unknown

accelerations of the storm. The results of the derivation are

that Q is given as

E(Wx ) E(wx) r  (3.9)E = (w,) E (w,')

VE(w2) () 2y2 + O(3.10)
VC

20



E(Wy2 ) = ( ,0 )2o + V.,2 0e 2  (3.11)vc

E( WxWy) =E(WyW) = VV --- ) 2- G2] (3.12)

where r is

T
2

- 0

T 0 (3.13)
0T 

2

2

0 T

av speed deviation of storm

C, directional deviation of storm.

The statistical directional and speed deviations for

different directional stratifications were used in the

calculation of the state excitation covariance matrix.

Several factors may contribute to the scatter of deviations.

The noise in the observations and the analyzed field can

certainly lead to errors in computing the average flow. If a

cyclone is asymmetric, the azimuthally averaged flow will not

give a good estimate of the steering flow, and thus may

contribute to scatter. The null hypothesis is that the mean

directional and speed deviations are both zero. That is, the

cyclone moves parallel to the surrounding flow with the same

21



speed as the flow. For different direction stratification,

both the directional and speed deviations are significantly

different from zero. The directional and speed deviations

values for each group of storm are shown in Table 3.2 from

[Ref.i].

TABLE 3.2 THE DIRECTIONAL AND SPEED DEVIATION VALUES FOR
DIFFERENT DIRECTION STRATIFICATIONS

Directions 265-285 285-345 345-015 015-025 025-055

28 41 54 45 37

av  2.3 2.2 2.1 2.1 2.2

The system state equation can be expanded as

T 2  1-0 -0

I x0 i 0 0 kT 0 l w ,, T 0 U '3 . 5

Yk l 0 0 2 2

0 T. 0 T

22



C. MEASUREMENT MODEL

For a linear measurement process, the measurements are

linearly related to the state variables and can be modelled

using the linear measurement equation.

Zk = Hxk + vk (3.16)

where

Zk set of measurements

H observation matrix

Xk state ve'ctor

v k measurement noise.

In order to measure longitude and latitude (x,y), the H

matrix must be chosen as follows;

H =r 0 0 0] (3.17)0= 0 10

Direct observation of the latitude and longitude provides the

x and y coordinates. The measurement equation is

[zXJ 0 V0 k (3.18)
z 0. 0 1 0]y+V

,'-k

1. The Measurement Noise Covariance Matrix R

The measurement noise vk has a variance associated with

the source of the measurement. This noise is a function of

many variables including the time of day, geographical

23



location, season and frequency. This is generally a non-white

Gaussian noise process.

Using the longitude deviation and latitude deviation

of the storm, the R matrix is the observation noise covariance

ma-rrY. This R ILaLLix accounts for the non :hite observation

noise vk'

R = (3.19)

where the values used for the longitude deviation (aX2 ) since

longitudes of storms are equally likely between 00 and 1800.

We can say that longitudes of storms are uniformly distributed

between 0-r radians with an probability of 1/. Because of

weather patterns and the necessary conditions for the storm

formation, typhoons will generally be uniformly distributed

across ocean areas within a certain distance from land.

Uniform distribution variance can be express as cX2 =(a-b)2 /12,

a=7r and b=0 * aX2=72/12 .

Distribution in latitude, however, will be predictable

within a natural or Gaussian distribution. The values (oY)

are used for the latitude deviations of storms. For Gaussian

distribution, variance C
2=E2 -(E) 2 where (E) is mean and E2 is

second moment. Each tropical cyclone position is assigned a

position code number (PCN) to indicate the accuracy of the fix

position. The latitude deviations of storms are given in



Reference 5 for different parts of the world. They depend on

PCN. Table 3 shows the latitudes and longitudes deviations

of the Northwest Pacific storms. The user must be careful to

find correct values of o for the part of the world he is

concerned with.

TABLE 3.3 THE MEASUREMENT NOISE COVARIANCE MATRIX VALUES

PCN SATELLITE DERIVED RADAR DERIVED

1 or 2 ox2 = 2 /12 ay2 =184.9 0x2 =2/12 02=361

3 or 4 o 
2 =7r2 /12 a2=292.4 o

2 =r 2 /12 C2=361
y 1

5 or 6 a 2 =7r2/12 a 2=948.6 2=7r2/12 oY2 = 3 6 1

D. SMOOTHING ALGORITHM

Smoothing attempts to improve the accuracy of past state

estimates using information from past and current

observations. This offline procedure has many variations.

This thesis is concerned with Fixed Interval Smoothing only.

As the name implies, fixed interval smoothing requires a

finite memory capacity to smooth each state estimate over a

fixed time interval. All observations before and after the

estimate time are within the interval, used by smoothing

algorithm. The smooLhing algorithm begins with the most

recent filter estimate and works backwards in time. One
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repetition of the algorithm is performed for each subscripted

state estimate. For our fixed interval smoothing algorithm

operating on an interval k units in duration, k-i repetitions

of the algorithm are performed during each smoothing.

Ak = Pk/kVP-Ik1/k (3.20)

'k/N = kk/k + Ak(2k+IN - k(k+1/k)) (3.21)

Pk/N = Pk/1k + Ak(Pk+I1N- Pk+1/k) AkT (3.22)

where

Ak=smoothing filter gain matrix,

Xk/N=smoothed state estimate a time k based on N observation

Pk/N=smoothed state error covariance matrix.
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IV. COMPUTER SIMULATIONS

A. GENERAL

The Kalman filter program STORM.FOR has been used by Asim

[Ref.2] in development of a Kalman filter for storm tracking.

The STORM.FOR program was modified to account for the complex

effect of pressure forces in the storm. Graphical results

were obtained using the Matlab graphics package and the plots

included are representative of the results obtained from the

three different storms.

Three different groups of storms (1988) are simulated

using a program given in the Appendix. The storm tracks used

were obtained from data collected at the Joint Typhoon Warning

Center (JTWC), while the position coordinates were obtained

using satellite and radar. There were three types of data:

raw data (observations), best track data and predictions. The

raw data was processed just as if it were the real-time

observations of the hurricane to produce the filtered

estimations. This is the input file for the filter and

smoothing algorithm. STORM.FOR generates FILDATA.DAT and

SMDATA.DAT contains the track information.

Three typhoons, Hal, Uleki and Doyle were simulated using

the information obtained from the JTWC.
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1. Typhoon Hal

An alert was superceded by the warning of a tropical

depression which was assigned the name Hal [Ref.5]. Later

tlH was upgraded (081200Z) to tropical storm Hal. Initially,

Hal tracked west southwestward, but eventually settled into a

west northwestward track.

Earlier at 101200Z, when Hal was 120 nm (222 km) northeast

of Maug in the northern Marianas, the tropical cyclone started

to decelerate and track to the southwest in response to a

strong pressure ridge to the north and west. After typhoon

Hal reached its peak intensity of 105 kt (54 m/sec) at

111200Z, it continued onward and passed over Maug. Power

outages and minor property damage were reported on the island

of Guam. With a mid latitude trough creating lower pressure

in the subtropical ridge north of the typhoon, Hal's direction

of track changed to the north-northwest. At 150000Z, Hal

approached 32 degrees north latitude and started to curve and

accelerate. Hal's widespread destructive force caused several

deaths and injuries along the coastal areas near Tokyo. As

Hal moved off to the northeast, its central convection was

stripped away from its low level circulation center

consequently weakening the system.

Figure 5 shows typhoon Hal's best track. The typhoon's

track data is in six-hourly increments. The filter and filter

with smoothing tracks are shown in Figure 6 and Figure 7,

respectively. Figure 8 shows the track results obtained with
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the Kalman filter and after the addition of the smoothing

algorithm. The filter average tracking error stands at

approximately 1 nm, while the smoother average tracking error

is always less than 1 nm. Figure 9 shows the tracking errors

of the filter and smoother. It is observed that use of the

smoother reduces the sensitive to large course changes.

These significant tracking error reductions were generated

by heuristics for this thesis. The reductions are the result

of an improved filtering estimation process outlined in

Chapter III. The improvements were made in the R matrix

(observation noise covariance matrix), the Q matrix (the input

noise covariance matrix), and the addition of Uk, a forcing

function, to the state estimate equation.
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2. Typhoon Doyle

The best track of typhoon Doyle is shown in Figure 10.

These best track positions are in six hourly increments. The

satellite intensity estimate was 40 kt (21 m/sec) maximum wind

speed at 151200Z. At first warning, the system was 96 nm (178

km) east-northeast of Wake Island. For the 24-hour period

from 151800Z to 161800Z, intensity increased from 50 to 115 kt

(26 to 59 m/sec). Doyle peaked in intensity at 161800Z and

assumie a northward track at 170000Z. Doyle cut a curvy path

following lower pressures between the high pressure

subtropical ridge to the southeast and another high cell to

the northwest centered near 42 degree north latitude. After

gradual weakening, Doyle began to move into a northeast

semicircle at 180900Z. Figures 11 and 12 show Doyle's path as

it slowed and moved between two high-pressure ridges as Doyle

moved northeast Kalman Filter position estimates where

formulated. These estimates with smoothing applied, appear in

Figure 13.

In general, the smoother increased the accuracy of

tracking. Figure 14 was plotted using the tracking error of

the filter together with the smoother. The average tracking

errors for this storm are 1 nm for the filter and smoother

estimate. In comparing the best track and the filter

estimate, they virtually duplicate each others tracks. This

improved accuracy was achieved by using time varying values

for the R and Q matricies ane the addition of a forcing
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function to the state estimation equation. These time varying

values were determined by the storm speed, direction, range

de,,iaton and bearing deviation. These results illustrate the

improved capability of a Kalman Filter using the time varying

calculation of parameters.
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3. Typhoon Uleki

Uleki was first detected at 281800Z August 1988.

During the next four days, Uleki tracked westward and

intensified. At 291800Z Uleki had reached tropical storm

intensity. As Uleki approached the Hawaiian Islands at peak

intensity, the direction of movement changed from west-

northwestward to northward. The hurricane approached to

within 270 nm of Honolulu at 040000Z before changing course to

the westnorthwest and accelerating. The tropical cyclone

began a weakening trend as it entered a shearing environment.

Uleki continued to move west-northwestward and approached the

International Dateline. At this time (080600Z), the tropical

cyclone had an intensity of 90 kt (46 m/sec). Uleki passed

onward to the westnorthwest along the southern edge of a

subtropical ridge, and gradually slowed. At 100600Z, the

speed of movement had dropped from 15 kt to 6 kt. The typhoon

had entered a low pressure steering flow in an area between

two high pressure subtropical ridges with a mid-latitude

trough approaching from the west; Uleki then began a 'step

climb' to the north-northwest. Uleki returned to a smooth

northwestward track and weakened.

Again, the best track vs. filtered track and filtered vs.

smoothing tracks, are almost identical in Figures 15 through

19. As before the tracking error is very small in magnitude.

This employment improved the parameters of the tracking

estimate. The Kalman filter has illustrated impressive
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results under three different tracking conditions. Tracking

graphs have shown that the three analyzed storms traversed

different directions along paths of varying complexity.
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V. CONCLUSION

The purpose of this research was to continue previous work

in the area of storm tracking using Kalman Filter techniques.

A fixed interval smoothing algorithm, developed in past

research, was used to improve the overall accuracy of the

storm tracking capability. Three different tropical storms

were simulated and the accuracy of the observed, filtered and

smoothed storm tracks were analyzed and discussed.

The smoother did improve the track accuracy on the basis

of the best track storm position.

In previous research, parameters in the Qk (state

excitation covariance matrix) and Rk (measurement noise

covariance matrix) matrices were established by curve fitting.

This thesis achieved more accurate and more stable results

adaptively u, ng observation and input variance related noise

amplitudes to set the Qk and Rk matrix parameters.

Additionally, the state estimate equation for position and

velocity was altered to include a forcing function based on

steering flow or pressure ridges surrounding the storm.

By estimating the noise power from the variance and

adapting the filter to compensate for varying noise power and

applying the external force to the system, the performance

benefits were significant. However, much work needs to be
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done in this area to improve the noise power estimate and

external force estimate further, so that the Kalman filter can

provide still better state estimates.
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APPENDIX STORM.FOR SOURCE CODE

C *** STORM ***

C*********** TO RUN
C
C 1) ENSURE STORM DATA IS AVAILABLE
C 2) RUN STORM.FOR
C 3) COPY OBSDATA,FILDATA,SMDATA,ERRDATA -- >MATLAB SUB-DIR.
C 4) BEGIN MATLAB -- > RUN STORM.M
C
C *********************************************************
C THIS PROGRAM EMPLOYS AN ADAPTIVE EXTENDED KALMAN FILTER
C WITHE A FIXED INTERVAL SMOOTHING ALGORITHM TO TRACK A
C TROPICAL STORM USING OBSERVED LATITUDES AND LONGITUDES.
C *********************************************************

C ***VARIABLE DEFINITIONS***

C AK = SMOOTHING FILTER GAIN MATRIX
C AKT = TRANSPOSE OF AK
C BRG = MEASURED TARGET BEARING IN RADIANS
C BRKKMI = PREDICTED TARGET BEAR MEASUREMENT IN
C RADIANS BRG(KIK-1)
C DBRG = MEASURED TARGET BEARING IN DEGREES
C DT = TIME DELAY BETWEEN OBSER.T(K) - T(K1)
C DTOR = DEGREE TO RADIAN CONVERSION FACTOR
C El,E2 MEASUREMENT RESIDUAL, Z(K) - H(X(KIK-1))
C EIMI,E2MI = MEASUREMENT RESIDUAL AT PREV.OBSERVATION
C ElM2,E2M2 = MEASUREMENT RESIDUAL TWO OBSER.PREVIOUS
C FACI = RECIPROCAL OF VARE
C G = KALMAN GAIN VECTOR
C GATE1 = ].5*STANDARD DEV.OF RESIDUAL PROCESS
C USED AS A GATE IN MANEUVER DETECTION
C H MEASUREMENT MATRIX
C HDG = ESTIMATED TARGET HEADING IN DEGREES
C HT = TRANSPOSE OF H
C I = COUNTER
C IMAT 4 X 4 IDENTITY MATRIX
C J = COUNTER
C K = ITERATION INTERVAL
C LPKK = STATE COVARIANCE MATRIX.AFTER PREV. OBS.
C LPKKM1 = A PRIORI STATE COVARIANCE ESTIMATE
C LXKK STATE ESTIMATE AFTER PREVIOUS OBS.
C LXKKM1 = A PRIORI STATE ESTIMATE
C MI,M2 = AVERAGE OF RESIDUALS OVER LAST 3 OBSERV.
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C PHI DISCRETE-TIME STATE TRANSITION MATRIX
C PHIT = TRANSPOSE OF PHI
C DEL = STATE NOISE COEFFICIENT MATRIX
C DELT = TRANSPOSE OF DEL
C PI = 3.141592654
C PKK = ESTIMATION ERROR COV.MATRIX, P(KIK)
C PKKS = SMOOTHED ERROR COVARIANCE MATRIX
C PKKM1 = PREDICTED EST.ERROR COV.MATRIX, P(KIK-1)
C PKKMIS = PREDICTED ERR.COV.MAT.FOR SMOOT.P(K+1K)
C IPKKMIS = INVERSE OF PKKMIS
C PSS = ERROR COV.MATRIX FOR SMOOTHING, P(KIK)
C R = MEASUREMENT NOISE COVARIANCE
C RANGE = DISTANCE FM SENSOR TO PRIORI TARGET POS.
C RTOD = RADIAN TO DEGREE CONVERSION FACTOR
C SPD = ESTIMATED TARGET SPEED IN KNOTS
C TEMP = TEMPORARY STORAGE MATRICES USED IN
C MATRIX OPERATIONS
C VARE = VARIANCE OF RESIDUALS PROCESS
C XDIFF = DISTANCE IN X DIRECTION FROM SENSOR TO A
C PRIORI TARGET POSITION
C XKK = ESTIMATED TARGET STATE VECTOR, X(K:K)
C XKKS = SMOOTHED TARGET STATE VECTOR
C XKKM1 = PREDICTED TARGET STATE VECTOR, X(K'K-1)
C XKKMIS = PRED.TARGET STATE VEC.FOR SMOOT.X(K+1K)
C XPOS = ESTIMATED TARGET POSITION IN X DIRECTION
C XS = SENSOR POSITION IN X DIRECTION
C XSS TARGET STATE VEC.FOR SMOOTHING, X(KIK)
C XT = TRUE TARGET POSITION IN X DIRECTION
C YDIFF = DIST.IN Y DIRECTION FROM SENSOR TO A
C PRIORI TARGET POSITION
C YPOS = ESTIMATED TARGET POSITION IN Y DIRECTION
C YS = SENSOR POSITION IN Y DIRErT ION
C YT = TRUE TARGET POSITION IN Y .IRECTION
C ZX = OBSERVED POSITION IN X DINECTION
C ZY = OBSERVED POSITION IN Y DIRECTION

C ***VARIABLE DECLARATIONS***
CHARACTER*I A,B

REAL*4 XKK(4,1),XKKM1(4,1),LPKKM1(4,4),LXKKM1(4,1)
REAL*4 H(2,4),HT(4,2),G(4,2),TEMP1(2,1),TEMP2(2,4)
REAL*4 TEMP3(2,1),TEMP4(4,2),TEMP5(4,1),TEMP6(4,4)
REAL*4 TEMP7(4,4),TEMP8(4,1),TEMP9(4,1),TEMP10(4,2)
REAL*4 DEL(4,2),DELT(2,4),UK(2,1)
REAL*4 PKK(4,4),PKKM1(4,4),Z(2,1),BRG
REAL*4 LXKK(4,1),LPKK(4,4),XS(10),YS(10),DBRG(10)
REAL*4 PHI(4,4),PHIT(4,4),IMAT(4,4),XT,YT
REAL*4 GATE1,E(2,1),VARE(2,2),IVARE(2,2),RTOD,DTOR
REAL*4 DT,DTF,XDIFF,YDIFF,RANGE,XS1,YS1,BRG1,BRKKM1
REAL*4 DATE,HR,MN,LAT,LONG,TOTIM,TIME,TIMEM1,DATE1
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REAL*4 OBSERR(300) ,FAC1,SIGTH2,SIGVT2,R(2,2) ,ETOTAL
REAL*4 X2,YS2 ,BRG2, ZX,ZY,M1,E1,E1M1,E1M2 ,TRKERR(300)
REAL*4 M2 ,E2 ,E2M1,E2M2 ,G11,G13,G21,G23, ZXM1, ZYMi
REAL*4 XKKS(4,1,300),PKKS(4,4,300),EAVG
REAL*4 XNNM1(4,1),XSS(4,1),XKKM1S(4,1),AK(4,4)
REAL*4 PNNM1(4,4),PSS(4,4),PKKM1S(4,4),IPKKMIS(4,4)
REAL*4 AKT(4,4),II(4,4),STRKERR(300),DTS(300)
REAL*4 TEMP1S(4,4),TEMP2S(4,1),TEMP3S(4,1)
REAL*4 TEMP4S(4,4),TEMP5S(4,4),TEMP6S(4,4)
REAL*4 THETA,SEN,BEN,SIGRA2,SIGBE2
INTEGER*2 NP
INTEGER*2 PCN

C OPEN OUTPUT DATA FILES
OPEN(UNIT=2 ,FILE='STORM1.DAT' ,STATUS='OLD')
OPEN(UNIT=3,FILE ='OUTDATA.DAT' ,STATUS='NEW')
OPEN(UNIT=4 ,FILE='TRUDATA.DAT' ,STATUS='NEW')
OPEN (UNIT=5, FILE=' FILDATA.DAT , STATUS=' NEW')
OPEN (UNIT=6, FILE=' SMDATA. DAT' ,STATUS='NW'
OPEN(UNIT=7,FILE='ELLIPDAT.DAT' ,STATUS='NEW')
OPEN (UNIT= , FILE=IATRIX.DAT' ,STATUS= 'NEW')
OPEN (UNIT=9, FILE='ERRDATA. DAT' ,STATUS= 'NEW')
OPEN(UNIT=10,FILE='ERRSDATA.DAT' ,STATUS='NEW')

C RADIAN/DEGREE CONVERSION FACTORS
RTOD=57 .29577951
DTOR=0.0174 5293

C COMPUTE 4X4 IDENTITY MATRIX
DO 5 I=1,4
DO -, J=1,4
IF (I.EQ.J) THEN

IMAT (I, J) =1. 0
ELSE

IMAT(I,J)=0. 0
ENDIF

5 CONTINUE

DO 6 I=1,2
DO 6 J=1,4

H(I,J)=0. 0
6 CONTINUE

H (1, 1) =1.0
H(2, 3)=1.0

C INITIALIZE TIME COUNTER
TOTTIM=0. 0
TIMEM1O0.0
NP= 0
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C INITIALIZE COUNTER FOR MANEUVER GATE
EIMI=0.0
EIM2=0.0

C COMPUTE BEARING MEASUREMENT COVARIANCE
C BEARING ERROR STANDARD DEVIATION = 1 NM

WRITE(*,*) 'FILTERING OBSERVED DATA WITH KALMAN FILTER'
WRITE(*,*) '** .... ***

810 READ(2,1001,END=800)DATE,HR,MN,LAT,A,LONG,B,PCN

1001 FORMAT(F6.0,F2.0,F2.0,F3.0,AI,F4.0,AI,II)

C FOR VARIANCE RELATED OBS.NOISE R MATRIX VALUES,FOR
C SATELLITE DERIVED TROPICAL CYCLONES RANGE AND BEARING
C DEVIATIONS RANGE DEV.GETTING FROM 1988 ANNUAL CYCLONE
C REPORT BEARING BEARING DEV. ARE UNIFORMLY DISTRIBUTED

IF((PCN.EQ.1).OR.(PCN.EQ.2))THEN
SIGRA2=184.96
SIGBE2=0.822467

ELSEIF((PCN.EQ.3).OR.(PCN.EQ.4))THEN
SIGRA2=292.41
SIGBE2=0.822467

ELSEIF((PCN.EQ.5).OR.(PCN.EQ.6))THEN
SIGRA2=948.64
SIGBE2=0.822467

ENDIF
C IF RADAR USES FOR STORM TRACKING
C SIGRA2=361
C SIGBE2=0.822467

R(1,1)=SIGBE2
R(1,2)=0.0
R(2,1)=0.0
R(2 , 2) =SIGRA2

NP=NP+ 1

MN=MN/60.0
LAT=LAT/10
LONG=LONG/10
TIME=HR+MN

IF (NP.EQ.1) THEN
DATE1=DATE
TIMEMI=TIME

ENDIF

IF (DATE.NE.DATEI) THEN
TIME=TIME+24
DT=TIME-TIMEM1
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TIME=TIME-24
ELSE

DT=TIME-T1MEM1
E14D IF

DTF=DT*60. 0
rUrS (HP) =DT
TOTTIM=TOTTIMID[Y

CALL INIT(LONG,LAT,XKK,PKK)

C 11N ORDER TO APPLY CORRECT FORCING FUNCTION WE N4EED TO KNJOW
C STORM DIRFEC.rOR EVERY WHERE, FOLLOWING ROUTINE IS TO FIND
C STORM DIRECTIONS

1F(((XKT(1, 1). GE.0). .AtD. (XIKK(l, 1).) GE.O0). MAD. (XI<YII(1. .1). 6E.0). Ati).
*M1 (fIi(3,i1) -.CE.O0)). OR. ((XYV(1, 1). LE. 0). AND. (XV '(3, 1). GE.O0)

. MID. (XKKII1 (1, 1). .). .At'. (XKKJIII(3, 1). CE.0)))TIIlN
IF( (XXFK-(1, 1). GE. XKK(1, 1)) .ANP. (XYKJ4(3, 1).CE. XKK(3, 1)) )'HIFVf

SEN4=DTOR* (XKKI1 1(3,1) -XKK(3, 1))
l3EN=DTOR* (XKKM1 (1,1) -XKK(1, 1))
THETA=ATAN (SEN/B3EN)
TIIETA=RTOD*'TIIETA

ELSEIF((XKKML(1 I)G K11))I V (*t( ) XKK(3,Ii

SEN=DTOR*(XK11(3,)-XKK(3,1))
BEN=DTOR*(X1KM1(1,)XKK(1,1))
IlETA=9 0-ATAN (SEN/BEN)

TIIETA=RTOD*TIIETA
ELSE

SENl=DTOR* (XKKItll(3,1) -XKK(3, 1))
BEN=DTOR* (XKF341 (1, 1) -XKK(I .1))

TIIETA=RTOD*TIIETA
ENDIF

ELSEIF((XKKv(, 1).GE.0).AND. (XYV(3,1 F0 N (XKFJI1(1, 1). LE,
* .M'D. (XFT'1(3,1).GE.0) TUN

SEII-DTOR* (XKI(M1 (3,1) -XKK(3, 1))
BIE=DTOR* (XKVM1 (1,1) -XKK(l, 1))
TIIETA=270-ATAII (SEN/BEll)
TI IETA=RTOD *TI! ETA

EIIDI F
ELSE

SENI=DTOR* (XKVM1 (3,1) -XKK(3, 1))
BFN-DTOR* (XFKII1 (1, 1) -XKK (1, 1))
TI1ETVr90-ATAN (SEll/BEN)
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THETA=RTOD*THETA
ENDIF

C DIFFERENT FORCING FUNC.FOR DIFF.DIRECTION GROUP OF STORM

IF((THETA.GE.265) .AND. (THETA.LE.285))THEN
UK(1,1)=(1/200)*37*(XKKM1(3,1)-XKK(3,l))
UK(2,1)=(1/200)*37*(XKKM1(3,1)-XKK(3,1))

ELSEIF( (THETA.GE.285) .AND. (THETA. LE.345) )THEN
UK ( 1, 1) =0. 245
UK(2, 1)=0.245

ELSEIF( (THETA.GE.345) .AND. (THETA.LE.015) )THEN
UK(1,1)=(1/200)*43*(XKKM1(3,1)-XKK(3,1))
UK(2,1)=(1/200)*43*(XKKM1(3,1)-XKK(3,1))

ELSEIF( (THETA.GE.015) .AND. (THETA.LE.025) )THEN
UK(1, 1)=0.245
UK(2, 1)=0.245

ELSEIF((THETA.GE.025) .AND. (THETA.LE.055))THEN
UK(1,1)=(1/200)*38*(XKKM1(3,1)-XKK(3,1))
UK(2,1)=(1/200)*38*(XKKM1(3,1)-XKK(3,1))

ELSE
UK(1, 1)=0.245
UK(2, 1) =0.245

ENDIF

CALL FINDPHI(PIDT)

CALL FINDDEL(DEL, DT)

Z (1,1) =LONG
Z (2,1) =LAT
ZX=LONG
ZY=LAT
IF(NP.EQ.1) THEN

C WRITE(* ,*) SX(010,O) :I
DO 601 I=1,4
LXKK(I, 1)=XKK(I, 1)

C WRITE(3,*)
C WRITE(3,*) (XKK(I,1),I=1,4)
601 CONTINUE

C WRITE(3,*)'P(01,0):'
DO 602 1=1,4
DO 602 J=1,4

C LPKK(I,J)=PKK(I,J)
C WRITE(3,401)PKK(I,J)
401 FORMAT(4F14.4)
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602 CONTINUE

ENDIF

C PROJECT AHEAD STATE AND ERROR COVARIANCE ESTIMATES
C X(K+1:K) = PHI * X(KIK) + DEL * UK

CALL MATMUL(PHI,XKK,4,4,1,TEMP8)
CALL MATMUL(DEL,UK,4,2,1,TEMP9)
CALL MATADD(TEMP8,TEMP9,4,1,1,XKKM1)

C WRITE(*,*)'X(',TIME, '',TIMEM1,',0):'
DO 603 I=1,4

C WRITE(3,*) (XKKM1(I,1),I=1,4)
C WRITE(3,*)

LXKKM1 (I,1' =XKKM1(I, 1)
603 CONTINUE

C P(K+IIK) = (PHI * P(KIK) * PHIT) + Q

CALL MATRAN(PHI,PHIT,4,4)
CALL mATMUL(PHI,PKK,4,4,4,TEMP6)
CALL MATMUL(TEMP6,PHIT,4, 4,4,TEMP7)
CALL GETQ(DT,XKKMI,Q,l)
CALL MATADD(TEMP7,Q,4,4,1,PKKM1)
DO 408 I=1,4
DO 408 J=1,4

LPKKM1 (I,J)=PKKM1 (I,J)
408 CONTINUE

C WRITE(*,*)'P(',TIME,' '',TIMEM1,',0):'
DO 604 I=1,4

C WRITE(3,402)(PKKM1(I,J),J=1,4)
402 FORNAT(4F14.4)
604 CONTINUE

204 CONTINUE

C COMPUTE OBSERVATION RESIDUAL
C E=Z(K)-H*X(K:K-1)

CALL MATMIJL(H,XKKM1,2,4 ,1,TEMP1)
CALL MATSUB(Z,TEMP1,2,1,E)

C COMPUTE VARIANCE OF RESIDUALS SEQUENCE
C AND ADAPTIVE GATE VALUE
C VAR(E)=H*PKKM1*HT+R

CALL MATRAN(H,HT,2,4)
CALL MATMUL(H,PKKM1,2,4,4,TEMP2)
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CALL MATMUL(TEMP2,HT,2,4,2,TEMP3)
CALL MATADD(TEMP3,R,2,2,1,VARE)

C WRITE(3,*) 'VARIANCE OF RESIDUALS = ,VARE
C GATE1=1.5*SQRT(VARE)

C COMPUTE KALMAN GAIN MATRIX
C G=PKKM1*HT* (H*PKKM1*HT+R) **-1

CALL MATRAN(H,HT,2,4)
CALL MATMUL(PKKM1,HT,4,4,2,TEMP4)
CALL MATINV(VARE, 2, IVARE)
CALL MATMUL(TEMP4,IVARE,4,2,2,G)

C WRITE(3,*)'PKKM1*HT -

DO 414 I=1,4
C WRITE(3,*)TEMP4(I,1)
414 CONTINUE

C WRITE(3,*)'G -

DO 613 1=1,4
C WRITE (3, *) G (1,1)
613 CONTINUE

C IF (L.EQ.1) THEN
C G11=G(1,1)
C G13=G(3,1)
C ELSE
C G21=G(l,l)
C G23=G(3,1)
C ENDIF

C COMPUTE UPDATED ESTIMATE
C X(K:K)=X(KIK-1)+G*E, WHERE E=Z(K)-H*X(KIK-1)

CALL MATMUL(G,E,4,2,1,TEMP5)
CALL MATADD(TEMP5,XKKM1,4,1,1,XKK)

C WRITE(3,*)'X(',TIME, '''1,TIME, ',',L,'):'
DO 605 I=1,4

C WTZITE(3,*)XKK(I,l)
605 CONTINUE

C COMPUTE UPDATED ERROR COVARIANCE MATRIX
C P(K:K)=(I - G*H)*P(KIK-1)

CALL MATMUL(G,H,4,2,4,TEMP6)
CALL MATSUB(IMAT,TEMP6,4, 4,TEMP7)
CALL MATMUL(TEMP7,PKKM1,4,4,4,PKK)

C WRITE(3,*)'P(',TIME ,'''1,TIME,', ',L, '):
DO 606 I=1,4

C WRITE(3,406)(PKK(I,J),J=1,4)
406 FORMAT(4F14.4)
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606 CONTINUE

C THESE STATEMENTS ARE FOR THE SMOOTHING ALGORITHM

DO 620 I=1,4
XKKS(I, 1,NP)=XKK(I, 1)

620 CONTINUE

DO 630 I=1,4
DO 630 J=1,4

PKKS(I,J,NP)=PKK(I,J)
630 CONTINUE

C COMPUTE TRUE TRACKING ERROR
TRKERR(NP) =SQRT ((LATXKK(1, 1)) **2+ (LONG-XKK(3, 1)) **2)

C COMPUTE OBSERVATION ERROR
C OBSERR(NP)=SQRT( (LAT-ZX) **2+(LNG-ZY) **2)

C COMPUTE ERROR ELLIPSE DATA
C CALL ELLIP(XKK(l,1),XKK(3,1),PKK(l,1),PKK(3,3),PKK(1,3))
C COMPUTE ESTIMATED X-Y POSITION, COURSE, AND SPEED

XPOS=XKK (1, 1)
YPOS=XKK(3, 1)
IF (XKK(2,1).EQ.0 .AND. XKK(4,1).EQ.0) THEN

HDG=0. 0
ELSE

HDG=RTOD*ATAN2(XKK(2,1) ,XKK(4,1))
ENDIF
IF (HDG.LT.0.0) HDG=HDG+360
SPD=60*SQRT(XKK(2, 1) **2+XKK(4, 1) **2)

C WRITE(*,*) 'FILTERED DATA FOR DATA POINT',NP
WRITE(3,*) 'FILTERED DATA FOR DATA POINT',NP

C WRITE(*,*) 'TIME X POS Y POS HEADING SPEED'
WRITE(3,*) 'TIME X POS Y POS HEADING SPEED'

C WRITE(*, *)TOTTIM,XPOS,YPOS,HDG,SPD
WRITE(3, *)TOTTIM,XPOS,YPOS,HDG,SPD
WRITE (4,*) TOTTIM, ZX, ZY
WRITE(5, *)TOTTIM,XPOS,YPOS,PKK(1, 1)
WRITE(9, *)NP,TRKERR(NP)

1002 FORMAT(1X,5F10.3)
1003 FORMAT(1X,F6.2,3X,F1O.1,2X,F11.1,3X,F8. 1,3X,F8. 1)
1004 FORMAT(X,F6.2,3(F8.1,2X))

C COMPARE BEARING ERRORS TO MANEUVER DETECTION GATES

IF ((ABS(M1).GT.(GATE1))) THEN

WRITE(*,*) '*** MANEUVER DETECTION **
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C WRITE(3,*)'*** MANEUVER DETECTION ***I

CALL REINIT(DT,ZX,ZY,ZIAMl,ZYMl,LPKKM1,XKKM,PKVtil)

E1M1=0. 0
E1M2=0. 0
GOTO 204

ENDIF

TIMEM1=TIME
DATE1=DATE

Z XM 1=Z X
ZYM1=ZY

GOTO 810

C THIS IS WHERE THE SMOOTHING ALOGORITHM STARTS
C FIXED INTERVAL SMOOTHING
800 WRITE(*,*) 'SMOOTHING FILTERED DATA WITH A'

WRITE(*,*) 'FIXED INTERVAL SMOOTHING ALGORITHM'
WRITE(*,*)'*-----

DO 1000 KK=1,NP-1
K=NP-KK

DT=DTS (K+l)

TIME=TIMEMl-DT
CALL FINDPHI(PIDT)

DO 901 I=1,4
XSS(I,1)=XKKS(I, 1,K)

901 CONTINUE

DO 902 I=1,4
DO 902 J=1,4
PSS(I,J)=PKKS(I ,J,K)

902 CONTINUE

C CALCULATE THE PREDIC.STATE AND ERROR COVARIA14CE MATRICES
C X(K+IIK)=PHI*X(K:K)

CALL MATMUL (PHiI,XSS,4,4,1,XKKM1S)
C P(K+11K)=PHI*P(KIK)*PHIT+Q

CALL MATRAN (PHI,PHIT,4,4)
CALL MATMUL(PHI,PSS,4,4 ,4,TEMP6)
CALL MATMUL(TEMP6,PHIT,4,4,4,TEMP7)
CALL GETQ(DT,XKKI1S,Q,1)
CALL MATADD(TEMP7,Q,4,4,1,PKKMIS)
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C CALCULATE THE SMOOTHING FILTER GAIN MATRIX
C AK=P(KIK)*PHIT*INV{P(K+11K))

CALL MATINV (PKKM1S,4,IPKKM1S)
CALL MATMUL (PKKMlS,IPKKMIS,4,4,4,II)
CALL MATMUL (PSS,PHIT,4,4,4,TEMPlS)
CALL MATMUL (TEMPlS,IPKKMlS,4,4,4,AK)

DO 904 I=1,4
XNNM1(I, 1)=XKKS(I,1,K+1)

904 CONTINUE

C CALCULATE THE SMOOTHED STATE ESTIMATE
C XKKS=X(KIK)+AK*(X(K+1iN)-X(K+11K)

CALL MATSUB (XNNM1,XKKMlS,4,1,TEMP2S)
CALL MATMUL kAK,TEMP2S,4,4,1,TEMP3S)
CALL MATADD (XSS,TEMP3S,4,1,K,XKKS)

DO 906 I=1,4
DO 906 J=1,4

PNNM1 (I,J)=PKY:3(I,J,K+1)
906 CONTINUE

C CALCULATE THE SMOOTHED CO'ARI ANCE MATRIX
C PKKS=P(KK)+AK*[P(K+1N)-P(K+11K)]*AKT

CALL MATSUB (PNNM1,PKKMlS,4,4,TEMP4S)
CALL MATRAN (AK,AKT,4,4)
CALL MATMUL (AK,TEMP4S,4,4,4,TEMP5S)
CALL MATMUL (TEMP5S,AKT,4,4,4,TEMP6S)
CALL MATADD (PSS,TEMP6S,4,4,K,PKKS)

C COMPUTE ESTIMATED X-Y POSITION, COURSE, AND SPEED
SXPOS=XKKS (1, 1, K)
SYPOS=XKKS(3, 1,K)
IF (X-:KS(2,1,K).EQ.0 .AND. X>;'1K).EQ.0) THEN

SHDG=0. 0
ELSE

SHDG=RTOD*ATAN2(XKKS(2,.!:, XKKS(4,1,K))
ENDIF
IF (SHDG.LT.0.0) SHDG=SHDG+360
SSPD=60*SQRT (XKKS (2,1, K) **2+XKKS (4,1,K) **2)

C WRITE(*,*) 'SMOOTHED DATA FOR DATA POINT',K
WRITE(3,*) 'S1'k)OTHED DATA FOR DATA POINT',K

C WRITE(*,*) 'TIME X POS Y POS HEADING SPEED'
WRITE(3,*) 'TIME X POS Y POS HEADING SPEED'

C WRITE(*,*)TOTTIM,SXPOS,SYPOS,SHDG,SSPD
WRITE (2 ,*) TOTTIM, SXPOS ,SYPOS, SHDG, SSPD

1010 FORMAT(1X,5F10.3)
1020 FORMAT(1X,F6.2,3X,F10.1,2X,Fl1.1,3X,F8.1, 3X,F8.1)
1030 FORIAT(X,F6.2,3(F8.1,2X))

TIMEM1=TIMNE
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1000 CONTINUE

C CALCULATE THE SMOOTHED TRACKING ERROR
C OPEN (UNIT=4,FILE= 'TRUDATA. DAT' ,STATUS= 'OLD')

DO 1100 K=1,NP
SXPOS=XKKS (1, 1,K)
SYPOS=XKKS(3, 1,K)

C READ(4,1001)DATE,HR,MN,LAT,A,LONG,B,PCN
STRKERR(K)=SQRT( (LAT-SXPOS)**2+(LONG-SYPOS)**2)
WRITE(6,1120)K,SXPOS,SYPOS,PXKS(1, 1,K)
WRITE(10, *)K,STRKERR(K)

1100 CONTINUE
1110 FORI4AT(I4,2FS.1)
.L120 FORMAT(I4,3(F8.1,2X))
1130 FORMAT(14,3F8.1)

CLOSE (UNIT=2)
CLOSE (UNIT=3)
CLOSE (UNIT=4)
CLOSE (UNIT=5)
CLOSE (UNIT=6)
CLOSE (UNIT=7)
CLOSE (UNIT=8)
CLOSE (UNIT=9)
CLOSE (UNIT=10)

WRITE(*,*) 'FIL.& SM.OUTPUT DATA IS LOCATED IN THE'
WRITE(*,*) 'DATA FILE OUTDATA.DAT. FOR GRAPHIC
WRITE (*, *) RESULTS, ''ENSURE OBSDATA.DAT,
WRITE(*,*) FILDATA.DAT, & SMDATA.DAT ARE'
WRITE(*,*) 'IN THE MATLAB SUB-DIR.AND RUN THE
WRITE(*,*) MIATLAB'M-FILE STORM2.M'
STOP
END

C: SUBROUTINES

SUBROUTINE FINDPHI(PIDT)
C
C COMPUTES THE VALUES OF THE PHI MATRIX
C ***************************

REAL*4 PHI (4, 4) ,DT

DO 1501 I=1,4
DO 1501 J=1,4
DO 1501 K=1,2
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PHI (I, J) =0. 0
1501 CONTINUE

C COMPUTE PHI MATRIX
DO 1500 I=1,4
PHI (I, I)=1.O

1500 CONTINUE
PHI(1,2)=DT
PHI (3,4)=DT

RETURN

END

SUBROUTINE FINDDEL(DEL, DT)

C COMPUTE THE VALUES OF THE DEL MATRIX

REAL*4 DEL(4,2),DT
DEL(1, 1)=DT**2 ./2.
DEL(1, 2)=0
DEL(2 ,1)=DT
DEL(2,2)=0
DEL(3, 1)=0
DEL(3, 2) =DT**2 ./2.
DEL(4, 1) =0
DEL(4 ,2)=DT

RETURN

END

SUBROUTINE INIT (LONG, LAT, XKK, P1K)
C
C THIS ROUTINE INITIALIZES THE STATE
C AND ERROR COVARIANCE ESTIMATES
C **********************

REAL*4 XKK(4,1),PKK(4,4)
REAL*4 LAT, LONG

C INITIAL STATE ESTIMATE
XKK(3, 1)=LAT
XKK (2, 1) =0. 0
XKK(1, 1)=LOI"G
XKK (4, 1) =0. 0

C INITIAL ERROR COVARIANCE ESTIM4ATE
PKK(1, 1)=1000000
PKK(1,2)=0.0
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PKK(1, 3)=0. 0
PKK (1, 4)=0. 0
PKK(2, 1)=0.0
PKK (2 ,2) =1000000
PKK (2 ,3) =0 .0
PKK(2,4)=0.0
PKK(3, 1)=0.0
PKK(3,2)=0.0
PKK(3 ,3)=1000000
PKK(3,4)=0.0
PKK(4, 1)=0.0
PKK(4, 2) =0.0
PKK (4, 3) =0. 0
PKK(4 ,4)=1000000

RETURN

END

SUBROUTINE GETQ (DT, XKKM1, Q, FLAG)

C ROUTINE TO GET Q MATRIX

REAL*4 DT,XKKM1(4,1),Q(4,4)
REAL*4 QPR(2,2),DEL(4,2),DELT(2,4)
REAL*4 SIGVT2, SIGTH2, VT

INTEGER FLAG

IF ((X,)-KKM1(2,1).EQ.0).OR.(XKKM1(4,1).EQ.0)) THEN
DO 100 I=1,4
DO 100 J=1,4

100 Q(I,J)=0.0
GOTO 200

ENDIF

C CALCULATE Q' MATRIX
IF( (THETA.GE.265) .AND. (THETA.LE.285) )THEN

S IGVT 2 =230
SIGTH2=280

ELSEIF((THETA.GE.285).AND.(THETA.LE.345))THEN
SI GVT2 =100

SI GTH 2 =100
ELSEIF((THETA.GE.345).AND.(THETA.LE.015))THEN

SIGVT2=210
SIGTH2=540

ELSEIF( (THETA.GE.015) .AND. (THETA.LE.025) )THEN
SI GVT 2 =100
SIGTH2=100

ELSEIF( (THETA.GE.025) .AND. (THETA.LE.055) )THEN
SIGVT2=220
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SIGTH2=370
ELSE

SIGVT2=100
SIGTH2=100

ENDIF

VT=SQRT(XKKI41(2,1)**2+XKKM1(4,1)**2)

QPR(1, 1)=(((X.KM1(2, 1)/VT)*-A2)*SIGVT2)+((XKKI1 (4, 1)**2)*SIT112)
QPR(2 ,2)=( ((XKKM1(4 ,1)/VT)**2-)*SIGVT2)+( (XKYJI1(2 ,1)**2)*STGTIH2)
QPR(1,2)=((XKKM1(2,1))*(XKKMI(4,1))/(VT**2))*SIrCVT2
* -(XKKM1(2,1))*(XKKM1(4,1))*SIGTH2

QPR(2, 1) =QPR(1 , 2)
IF (FLAG.EQ.0) THEN

QPR(1, 1)=2.50*QPR(l, 1)
QPR(2, 2)=2 .50*QPR(2,2)

ENDIF

CALL FINDDEL(DEL, DT)

C Q=DEL(K)*Q' (K) *DELT(K)
CALL MATRAN(DEL,DELT,4,2)
CALL MATMUL(DEL,QPR, 4,2, 2,TEMP1O)
CALL MATMUL(TEMP1O,DELT,4,2,4,Q)
CALL MATSCL(O.01,Q, 4,4 ,Q)

200 RETURN

END

SUBROUTINE REIN4IT(DT,ZX,ZY,XHJ1,ZYM,LPKK~4I,XKyyMl 1 )

C THIS ROUTINE RE-INITIALIZES THE STATE AND ERROR
C COVARIANCE ESTIMATES

REAL*4 DT,XKKM1(4,1),PKKM1(4,4)
REAL*4 ?.X, ZY, ZXM1, ZYMi, LPKKM1 (4,4)

XDIFF=ZX-ZXM1
YDIFF=ZY-ZYM1

XKKM1(1, 1)=ZX
XKKI(2, 1)=XDIFF/DT
XKKM1 (3, 1)=ZY
XKKM1 (4,1) =YDIFF/DT

C WRITE(3,*) 'REINITIALIZED STATES ARE:'
DO 100 I=1,4

C WRITE(3,*)XKK41(I,l)
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100 CONTINUE

PKKM1(1, 1)=2.25*LPKKM1(1,1)
PKKM1(1,2)=O.0
PKKM1(1,3)=2.25*LPKKM1(1,3)
PKKM1(1,4)=0.0
PKKM1(2, 1)=0.0
PKKM1(2, 2) =0. 1111
PKKM1 (2, 3) =0. 0
PKKM1(2,4)=0.0
PKKM1(3, 1) =225 *LPKKM1(3, 1)
PKKMI(3,2)=0.O
PKKM1 (3, 3)=2.25*LPKKM1(3, 3)
PKKM1(3,4)=0.0
PKKM1(4, 1)=0.0
PKKM1 (4 ,2)=0. 0
PKKM1 (4, 3)=0.0
PKKM1 (4 ,4)=0. 1111

RETURN

END

SUBROUTINE MP(XS1,YS1,XS2,YS2,BRG1,BRG2,ZX,ZY)
C
C THIS ROUTINE COMPUTES THE ESTIMATED
C X,Y POSITION OBTAINED FROM MEASUREMENTS
C

REAL*4 ZX,ZY
REAL*4 XS1,YS1,XS2,YS2,BRG1,BRG2
REAL*4 NUMER,DENOM

C INITIAL STATE ESTIMATE

NtMER=(-YS2*TAN(BRG2) )+(YS1*TAN(BRG1) )+XS2-XS1
DENOM=TAN (BRG1) -TAN (BRG2)

Z Y=NUI4ER/ DENOM
ZX=(ZY-YS1) *TAN(BRG1)+XS1

RETURN

END

SUBROUTINE ELLIP(XT,YT,P1,P3,P13)
C
C THIS SUBROUTINE COMPUTES ERROR ELLIPSE DATA
C FROM ERROR COVARIANCE DATA
C
C DIMENSIONS AND DECLARATIONS
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REAL*4 XT,YT,XP(21),YP(21),A,B,THE1,SIG2X,SIG2Y
REAL*4 SX,SY,PT,CT,ST,P1,P13,P3

A= 2 *P13
B=P1- P3
THE1=0. 5*ATAN2 (A, B)
A= (P1+P3 )/2
B=0.0
IF (P13.EQ.0.0) GOTO 10
B=P13/SIN (2. 0*THE1)

10 SIG2X=ABS (A+B)
SIG2Y=ABS (A-B)
SX=SIG2X**0. 5
SY=SIG2Y**0. 5
PT=3.141592654/10
CT=CQS (THEl1)
ST=SIN (THEl)

DO 100 IE=1,21
XP(IS--)=SX*COS(P4T*IE)*CT-SY*SIN(PT*IE)*ST+XT
YP(IE)=SX*COS(PT*IE)*ST+SY*SIN(PT*IE)*CT+YT
WRITE(7,*)XP(IE),CHAR(9),YP(IE)

100 CONTINUE

RETURN

END

SUBROUTINE MATMUL(A,B,L,M,N,C)
C
C THIS ROUTINE MULTIPLIES TWO MATRICES TOGETHER
C{ C(L,N) =A(L,M) * B(M,N)}
C
C DIMENSIONS AND DECLARATIONS

REAL*4 A(L,M),B(M,N),C(L,N)

DO 10 I=1,L
DO 10 J=1,N
C (I ,J) =0.0

10 CONTINUE

DO 100 I= 1,L
DO 100 J= 1,N
DO 100 K= 1,M
C(I,J) = C(I,J) + A(I,K)*B(K,J)

100 CONTINUE

RETURN

END
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SUBROUTINE MATRAN(A,B,N,M)
C ****************************************

C THIS ROUTINE TRANSPOSES A MATRIX
C (B(M,N) = A'(N,M)
C ****************************************

C DIMENSIONS AND DECLARATIONS
REAL*4 A(N,M), B(M,N)

DO i0n I= 1,N
DO 100 J= 1,M
B(J,I) = A(I,J)

100 CONTINUE

RETURN

END

SUBROUTINE MATSCL(Q,A,N,M,C)
C *****************************************************
C THIS ROUTINE MULTIPLIES A MATRIX WITH A SCALAR
C { C(N,M) = Q * A(N,M) )
C *****************************************************

C DIMENSIONS AND DECLARATIONS
REAL*4 A(N,M), C(N,M), Q

DO 100 1 = 1,N
DO 100 J = 1,M
C(I,J) = Q*A(I,J)

100 CONTINUE

RETURN

END

SUBROUTINE MATSUB(A,B,N,M,C)
C *********************************************
C THIS ROUTINE SUBTRACTS TWO MATRICES
C {C(N,M) = A(N,M) - B(N,M) )
C *********************************************

C DIMENSIONS AND DECLARATIONS
REAL*4 A(N,M),B(N,M),C(N,M)

DO 100 I = 1,N
DO 100 J = 1,M
C(I,J)=A(I,J) -B(I,J)

100 CONTINUE

RETURN
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END

SUBROUTINE MATADD(A,B,N,M,L,C)

C THIS ROUTINE ADDS TWO MATRICES
C {C(N,M) = A(N,M) + B(N,M)}

C DIMENSIONS AND DECLARATIONS
REAL*4 A(N,M),B(N,M),C(N,M,L)
DO 100 I = 1,N
DO 100 J = 1,M
C(I,J,L)=A(I,J)+B(I,J)

100 CONTINUE

RETURN
END

SUBROUTINE MATINV (A,N,C)

C THIS ROUTINE COMPUTES THE INVERSE OF
C A MATRIX
C C(N,N)=INV [A(N,N)]

C DIMENSIONS AND DECLARATIONS
REAL*4 A(N,N),C(N,N),D(20,20)
DO 100 I1 1,N
DO 100 J =1,N

DO 115 I=1,N
DO 115- J=N+1,2*N

115 D(I,J)=0.0

DO 120 I=1,N
J=I+N

120 D(I,J)=1.0

DO 240) K=1,14
M=K+1
IF (K.EQ.N) GOTO 180
L--K
DO 140 I=M,N

140 IF (ABS(D(I,K)).GT.ABS(D(L,K))) L=-I
IF (L.EQ.K) GOTO 180

DO 160 J=K,2*N
TEMP=D(K,J)
D(K,J) =D(L,J)

160 D(L,J)=TEMP
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180 DO 185 J=M,2*N
185 D(K,J)=D(K,J)/D(K,K)

IF (K.EQ.1) GOTO 220
M1=K-1
DO 200 I=1,M1
DO 200 J=M,2*N

200 D(I,J)=D(I,J)-D(I,K)*D(K,J)

IF (K.EQ.N) GOTO 260

220 DO 240 I=M,N
DO 240 J=M,2*N

240 D(I,J)=D(I,J)-D(I,K)*D(K,J)

260 DO 265 I=1,N
DO 265 J=1,N
K=J+N

265 C (I, J) =D(I, K)

RETURN
END
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